Formalizing polygonal knot origami
نویسندگان
چکیده
منابع مشابه
Proof Assistant Decision Procedures for Formalizing Origami
Origami constructions have interesting properties that are not covered by standard euclidean geometry. Such properties have been shown with the help of computer algebra systems. Proofs performed with computer algebra systems can be accompanied by proof documents, still they lack complete mathematical rigorousity, like the one provided by proof assistant checked proofs. Transforming such proofs ...
متن کاملOrigami tubes with reconfigurable polygonal cross-sections.
Thin sheets can be assembled into origami tubes to create a variety of deployable, reconfigurable and mechanistically unique three-dimensional structures. We introduce and explore origami tubes with polygonal, translational symmetric cross-sections that can reconfigure into numerous geometries. The tubular structures satisfy the mathematical definitions for flat and rigid foldability, meaning t...
متن کاملMonte Carlo Explorations of Polygonal Knot Spaces
Polygonal knots are embeddings of polygons in three space. For each n, the collection of embedded n-gons determines a subset of Euclidean space whose structure is the subject of this paper. Which knots can be constructed with a specified number of edges? What is the likelihood that a randomly chosen polygon of n-edges will be a knot of a specific topological type? At what point is a given topol...
متن کاملGeometric Knot Spaces and Polygonal Isotopy
The space of n-sided polygons embedded in three-space consists of a smooth manifold in which points correspond to piecewise linear or “geometric” knots, while paths correspond to isotopies which preserve the geometric structure of these knots. The topology of these spaces for the case n = 6 and n = 7 is described. In both of these cases, each knot space consists of five components, but contains...
متن کاملPolygonal Knot Space near Ropelength-minimized Knots
For a polygonal knot K, it is shown that a tube of radius R(K), the polygonal thickness radius, is an embedded torus. Given a thick configuration K, perturbations of size r < R(K) define satellite structures, or local knotting. We explore knotting within these tubes both theoretically and numerically. We provide bounds on perturbation radii for which we can see small trefoil and figure-eight su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Symbolic Computation
سال: 2015
ISSN: 0747-7171
DOI: 10.1016/j.jsc.2014.09.031